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Abstract. Let G be a connected graph on n vertices. G is called tricyclic

if it has n+2 edges, and tetracyclic if G has exactly n+3 edges. Suppose

Cn and Dn denote the set of all tricyclic and tetracyclic n−vertex graphs,

respectively. The aim of this paper is to calculate the minimum and

maximum of eccentric connectivity index in Cn and Dn.
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1. Introduction

In this section we recall some definitions that will be used in the paper. Let

G = (V,E) be a simple and finite undirected graph with v vertices and e edges

and Graph denote the collection of all non-isomorphic finite graphs.
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Suppose G is a graph with vertex and edge sets of V (G) and E(G), respec-

tively. If x, y ∈ V (G) then the distance dG(x, y) (or d(x,y) for short) between

x and y is defined as the length of a minimum path connecting x and y. The

Wiener index is defined as the summation of distances between all pairs of

vertices in the graph under consideration [20]. A topological index is called

distance-based if it can be defined by distance function d(−,−). It is worthy

to mention here that Wiener did not consider the distance function d(−,−)

in his seminal paper, but Hosoya [10], was the first scientist presented a new

simple formula for the Wiener index by using distance function. We encourage

the readers to consult [4, 5, 12, 18] for more information on Wiener index.

The cyclomatic number of a connected graph G is defined as c(G) =

|E(G)| − |V (G)| + 1. A graph G is called k−cyclic, if c(G) = k. In partic-

ular, if c(G) = 1, 2, 3 or 4 then G is called unicyclic, bicyclic, tricyclic or

tetracyclic graph, respectively. Recently, some distance-based topological

indices of unicyclic, bicyclic and tricyclic graphs are considered into account

[9, 14, 16, 17, 22].

The eccentricity εG(u) of a vertex u in a graph G is defined as the largest

distance between u and other vertices of G. We will omit the subscript G when

the graph is clear from the context. The eccentric connectivity index of G is

defined as ξc(G) =
∑

u∈V (G) deg(u)ε(u) [15]. We refer the interested readers

to [1, 2] for some applications and [8, 11, 13, 21, 23] for the mathematical

properties of this topological index.

Throughout this paper our notation is standard and taken mainly from the

standard book of graph theory as [3, 19]. The complete, path, star and cycle

graphs on n vertices are denoted by Kn, Pn, Sn and Cn, respectively. In this

paper, we determine the maximum and minimum of the eccentric connectivity

index in the classes of tricyclic and tetracyclic graphs in terms of its order.

Figure 1. (a). An; (b). Bn.

2. Main Results

Let G and H be two simple and connected graphs with disjoint vertex sets.

For given vertices a ∈ V (G) and b ∈ V (H), a splice of G and H is defined as

the graph (G ·H)(a,b) obtained by identifying the vertices a and b. Similarly,

a link of G and H is defined as the graph (G ∼ H)(a,b) obtained by joining a
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and b by an edge, see [7]. Suppose Cn and Dn denote the set of all tricyclic

and tetracyclic n−vertex graphs, respectively. In this section the maximum

and minimum of this topological index are computed in the classes of tricyclic

and tetracyclic n−vertex graphs. Our work is a continuation of [22] that the

authors computed the eccentric connectivity index of unicyclic graphs. In what

follows, let An and Bn are graphs depicted in Figure 1. Furthermore, we will

use Sn + 3e and Sn + 4e to denote the graphs obtained by inserting three and

four arbitrary edges of S̄n to Sn, respectively.

Theorem 2.1. Suppose G ∈ Cn, n ≥ 6. Then ξc(Sn + 3e) 6 ξc(G), with

equality if and only if G ∼= Sn + 3e.

Proof. Let x is the number of vertices of degree n − 1 in G. Then ξc(G) >
4n + 8 − x(n − 1), with equality if and only if each vertex of degree less than

n − 1 has eccentric connectivity 2. On the other hand, x is equal to 0 or 1.

If x = 0, then ξc(G) > 4n + 8 and if x = 1, then ξc(G) > 3n + 9. So, each

graph in which one vertex of degree n − 1 and all other vertices of eccentric

2, has minimum eccentric connectivity. In other words, Sn + 3e has minimum

eccentric connectivity.

�

Using similar arguments as Theorem 2.1 one can prove the following result:

Theorem 2.2. Let G ∈ Dn, n ≥ 6. Then ξc(Sn + 4e) 6 ξc(G), with equality

if and only if G ∼= Sn + 4e.

Lemma 2.3. Let G ∈ Cn and u is a vertex of G. Suppose G′ is obtained

from G by adding a new vertex x, then joining x to u. Then ξc(G′)− ξc(G) 6
2n+ εG(u) + 6 where εG(u) 6 n− 3.

Proof. It follows from the structure of G that, εG(u) 6 n − 3. Now, assume

that X is the sum of degrees over all vertices as v such that εG(v) = εG′(v).

Thus X > 2[ εG(u)+1
2 ]− 1 and ξc(G′)− ξc(G) 6 2n+ 2εG(u) + 5−X. Therefore

ξc(G′)− ξc(G) 6 2n+ 6− 2[ εG(u)+1
2 ] + 2εG(u) 6 2n+ εG(u) + 6 that εG(u) 6

n− 3. �

By Fig 2, it is not difficult to see that:

Lemma 2.4. If G ∈ C6, then ξc(G) 6 ξc(A6).

By definition of An, we calculate that:

Lemma 2.5. For every n > 6,

ξc(An) =

{
3
2n

2 + n− 18 2 | n
3
2n

2 + n− 37
2 2 - n
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Figure 2. Some Tricyclic Graphs on Six Vertices with their

Eccentric Connectivity Indices.

Figure 3. (S4 ∼ S5 ∼ S6)
(1,2,3)
(r1,r2,r3).

A Hamiltonian cycle in G is a cycle such that visits each vertex exactly

once. The graph G is called hamiltonian if it contains a Hamilton cycle. If G

has vertices v1, v2, ..., vn, the sequence (deg(v1), deg(v2), ..., deg(vn)) is called a

degree sequence of G. Suppose G1, ..., Gn are connected rooted graphs with

root vertices r1, ..., rn, respectively. The quasilink (G1 ∼ ... ∼ Gn)
(k1,...,kn)
(r1,...,rn) is

obtained by adding a new vertex x, then joining x to ri by a path of length ki,

i = 1, 2, ..., n. As an example, Fig. 2 shows the quasilink of three stars S4, S5

and S6. If ki = 0, i = 1, ..., n, then the quasilink of G1, ..., Gn is isomorphic

to the splice of G1, ..., Gn. Furthermore, if k1 = 1 and k2 = 0 then (G1 ∼
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G2)
(1,0)
(r1,r2)

∼= (G1 ∼ G2)(r1,r2). In what follows, we contract that at least one of

ki, is not equal to zero, i = 1, 2, ..., n.

Theorem 2.6. Suppose G ∈ Cn, n ≥ 6. Then ξc(G) 6 ξc(An).

Proof. Induct on n. By Lemma 2.4, the result is valid for n = 6. Let n > 7

and assume the theorem holds for n. Suppose G is a tricyclic graph with n+ 1

vertices. If G has a pendent vertex as x, then by our assumption, ξc(G− x) 6
ξc(An) and so, by Lemma 2.3, ξc(G) 6 ξc(An+1). If G does not have any

pendent vertex, then it,s degree sequence is equal to (6, 2, ..., 2︸ ︷︷ ︸
n−1

), (4, 4, 2, ..., 2︸ ︷︷ ︸
n−2

) or

(3, 3, 3, 3, 2, ..., 2︸ ︷︷ ︸
n−4

). Let G is Hamiltonian. Then for each vertex u of G, ε(u) 6

{
n
2 2 | n
n−1

2 2 - n
. Thus ξc(G) 6

{
n2 + 2n 2 | n
n2 + n− 2 2 - n

and so ξc(G) 6 ξc(An+1).

Thus, if (6, 2, ..., 2︸ ︷︷ ︸
n−1

) or (4, 4, 2, ..., 2︸ ︷︷ ︸
n−2

) is a degree sequence of G, then ξc(G) 6

ξc(An+1). Assume that the degree sequence ofG is (3, 3, 3, 3, 2, ..., 2︸ ︷︷ ︸
n−4

). IfG is not

quasilink of some graphs, then by similar argument as above, ξc(G) 6 ξc(An+1).

Otherwise, G is a quasilink of some graphs that one of them is a rooted cycle

C and other one are connected rooted graphs isomorphic to G1 with rooted

vertex r2. Let r1 is the rooted vertex of C and, ur1 and uv are their edges.

If H is obtained from G by deleting edges uv and ur1, then by adding edges

ux and uy such that xy is an edge of G1 with dG1(x, r2) = εG1(r2), we have

ξc(G) 6 ξc(H). On the other hand, H has a pendant vertex so, by the above

argument ξc(H) 6 ξc(An+1), which completes the proof. �

Corollary 2.7. Suppose G ∈ Cn, n ≥ 6. Then

ξc(G) 6

{
3
2n

2 + n− 18 2 | n
3
2n

2 + n− 37
2 2 - n

.

By Fig 4, we can write:

Lemma 2.8. If G ∈ D6, then ξ
c(G) 6 ξc(B6).

By a simple calculation, we can obtain:

Lemma 2.9. For every n > 7,

ξc(Bn) =

{
3
2n

2 + 3n− 30 2 | n
3
2n

2 + 3n− 61
2 2 - n

.

Now apply Lemma 2.8 and a similar technique as the proof of Theorem 2.6

to prove the following result:
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Figure 4. Some Tetracyclic Graphs on 6 Vertices with Their

Eccentric connectivity Indices.

Theorem 2.10. Suppose G ∈ Dn, n ≥ 6. Then ξc(G) 6 ξc(Bn).

Corollary 2.11. Suppose G ∈ Dn, n ≥ 7. Then

ξc(G) 6

{
3
2n

2 + 3n− 30 2 | n
3
2n

2 + 3n− 61
2 2 - n

.

Proposition 2.12. For every n > 6, we have ξc(An) 6 ξc(Bn).
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